Sparsity-guided saliency detection for remote sensing images

نویسندگان

  • Danpei Zhao
  • Jiajia Wang
  • Jun Shi
  • Zhiguo Jiang
چکیده

Traditional saliency detection can effectively detect possible objects using an attentional mechanism instead of automatic object detection, and thus is widely used in natural scene detection. However, it may fail to extract salient objects accurately from remote sensing images, which have their own characteristics such as large data volumes, multiple resolutions, illumination variation, and complex texture structure. We propose a sparsity-guided saliency detection model for remote sensing images that uses a sparse representation to obtain the high-level global and background cues for saliency map integration. Specifically, it first uses pixel-level global cues and background prior information to construct two dictionaries that are used to characterize the global and background properties of remote sensing images. It then employs a sparse representation for the high-level cues. Finally, a Bayesian formula is applied to integrate the saliency maps generated by both types of high-level cues. Experimental results on remote sensing image datasets that include various objects under complex conditions demonstrate the effectiveness and feasibility of the proposed method. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JRS.9.095055]

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Salient regions detection in satellite images using the combination of MSER local features detector and saliency models

Nowadays, due to quality development of satellite images, automatic target detection on these images has been attracted many researchers' attention. Remote-sensing images follow various geospatial targets; these targets are generally man-made and have a distinctive structure from their surrounding areas. Different methods have been developed for automatic target detection.  In most of these met...

متن کامل

Joint Multi-Image Saliency Analysis for Region of Interest Detection in Optical Multispectral Remote Sensing Images

The automatic detection of regions of interest (ROI) is useful for remote sensing image analysis, such as land cover classification, object recognition, image compression, and various computer vision related applications. Recently, approaches based on visual saliency have been utilized for ROI detection. However, most existing methods focus on detecting ROIs from a single image, which generally...

متن کامل

A Saliency Guided Semi-Supervised Building Change Detection Method for High Resolution Remote Sensing Images

Characterizations of up to date information of the Earth's surface are an important application providing insights to urban planning, resources monitoring and environmental studies. A large number of change detection (CD) methods have been developed to solve them by utilizing remote sensing (RS) images. The advent of high resolution (HR) remote sensing images further provides challenges to trad...

متن کامل

Saliency Analysis via Hyperparameter Sparse Representation and Energy Distribution Optimization for Remote Sensing Images

In an effort to detect the region-of-interest (ROI) of remote sensing images with complex data distributions, sparse representation based on dictionary learning has been utilized, and has proved able to process high dimensional data adaptively and efficiently. In this paper, a visual attention model uniting hyperparameter sparse representation with energy distribution optimization is proposed f...

متن کامل

Compressed-Sampling-Based Image Saliency Detection in the Wavelet Domain

When watching natural scenes, an overwhelming amount of information is delivered to the Human Visual System (HVS). The optic nerve is estimated to receive around 108 bits of information a second. This large amount of information can’t be processed right away through our neural system. Visual attention mechanism enables HVS to spend neural resources efficiently, only on the selected parts of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017